105 research outputs found

    Sign problem free quantum Monte-Carlo study on thermodynamic properties and magnetic phase transitions in orbital-active itinerant ferromagnets

    Full text link
    The microscopic mechanism of itinerant ferromagnetism is a long-standing problem due to the lack of non-perturbative methods to handle strong magnetic fluctuations of itinerant electrons. We have non-pertubatively studied thermodynamic properties and magnetic phase transitions of a two-dimensional multi-orbital Hubbard model exhibiting ferromagnetic ground states. Quantum Monte-Carlo simulations are employed, which are proved in a wide density region free of the sign problem usually suffered by simulations for fermions. Both Hund's coupling and electron itinerancy are essential for establishing the ferromagnetic coherence. No local magnetic moments exist in the system as a priori, nevertheless, the spin channel remains incoherent showing the Curie-Weiss type spin magnetic susceptibility down to very low temperatures at which the charge channel is already coherent exhibiting a weakly temperature-dependent compressibility. For the SU(2) invariant systems, the spin susceptibility further grows exponentially as approaching zero temperature in two dimensions. In the paramagnetic phase close to the Curie temperature, the momentum space Fermi distributions exhibit strong resemblance to those in the fully polarized state. The long-range ferromagnetic ordering appears when the symmetry is reduced to the Ising class, and the Curie temperature is accurately determined. These simulations provide helpful guidance to searching for novel ferromagnetic materials in both strongly correlated dd-orbital transition metal oxide layers and the pp-orbital ultra-cold atom optical lattice systems.Comment: 17 pages, 17 figure

    Detecting edge degeneracy in interacting topological insulators through entanglement entropy

    Full text link
    The existence of degenerate or gapless edge states is a characteristic feature of topological insulators, but is difficult to detect in the presence of interactons. We propose a new method to obtain the degeneracy of the edge states from the perspective of entanglement entropy, which is very useful to identify interacting topological states. Employing the determinant quantum Monte Carlo technique, we investigate the interaction effect on two representative models of fermionic topological insulators in one and two dimensions, respectively. In the two topologically nontrivial phases, the edge degeneracies are reduced by interactions but remain to be nontrivial.Comment: 6 pages, 4 figure

    One-dimensional Quantum Spin Dynamics of Bethe String States

    Full text link
    Quantum dynamics of strongly correlated systems is a challenging problem. Although the low energy fractional excitations of one dimensional integrable models are often well-understood, exploring quantum dynamics in these systems remains challenging in the gapless regime, especially at intermediate and high energies. Based on the algebraic Bethe ansatz formalism, we study spin dynamics in a representative one dimensional strongly correlated model, {\it i.e. }, the antiferromagnetic spin-12\frac{1}{2} XXZ chain with the Ising anisotropy, via the form-factor formulae. Various excitations at different energy scales are identified crucial to the dynamic spin structure factors under the guidance of sum rules. At small magnetic polarizations, gapless excitations dominate the low energy spin dynamics arising from the magnetic-field-induced incommensurability. In contrast, spin dynamics at intermediate and high energies is characterized by the two- and three-string states, which are multi-particle excitations based on the commensurate N\'eel ordered background. Our work is helpful for experimental studies on spin dynamics in both condensed matter and cold atom systems beyond the low energy effective Luttinger liquid theory. Based on an intuitive physical picture, we speculate that the dynamic feature at high energies due to the multi-particle anti-bound state excitations can be generalized to non-integrable spin systems.Comment: 15 pages, to appear in Phys. Rev.
    • …
    corecore